The Role of Clouds, Water Vapor, Circulation, and Boundary Layer Structure in the Sensitivity of the Tropical Climate
نویسندگان
چکیده
The physical mechanisms that affect the tropical sea surface temperature (SST) are investigated using a twobox equilibrium model of the Tropics. One box represents the convecting, warm SST, high humidity region of the Tropics, and the other box represents the subsidence region with low humidity, boundary layer clouds, and cooler SST. The two regions communicate by energy and moisture fluxes that are proportional to the strength of the overturning circulation that couples the two regions. The boundary layer properties in the subsiding region are predicted with a mixing line model. Humidity above the inversion in the subsiding region is predicted from moisture conservation. The humidity above the inversion in the subsiding region increases rapidly with temperature, but this has less effect on the sensitivity than expected, because the inversion lowers as the humidity above the inversion is increased. Some of the increased greenhouse effect of the free troposphere can be offset by decreased greenhouse effect of the boundary layer. Increasing the area of the warm, convective region increases the SSTs, because of the greenhouse effect of the greater upper-tropospheric water vapor in the convective region. The circulation strength is constrained by radiative cooling in the cold pool. The strength of the circulation decreases with increasing convective area, because the increase in dry static stability overwhelms the increase in cooling rate. Although they have strong individual effects on longwave and shortwave radiation, high clouds in the convective region do not affect the tropical SSTs strongly, because their net radiative forcing at the top of the atmosphere is small. Low clouds in the subsidence region have a strong cooling affect on the tropical SST, because they strongly reduce net radiative heating at the top of the atmosphere. A negative feedback is produced if the low clouds are predicted from the observed relationship between stratus cloud amount and lower-tropospheric stability.
منابع مشابه
Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models
[1] The radiative response of tropical clouds to global warming exhibits a large spread among climate models, and this constitutes a major source of uncertainty for climate sensitivity estimates. To better interpret the origin of that uncertainty, we analyze the sensitivity of the tropical cloud radiative forcing to a change in sea surface temperature that is simulated by 15 coupled models simu...
متن کاملThe global impact of supersaturation in a coupled chemistry-climate model
Ice supersaturation is important for understanding condensation in the upper troposphere. Many general circulation models however do not permit supersaturation. In this study, a coupled chemistry climate model, the Whole Atmosphere Community Climate Model (WACCM), is modified to include supersaturation for the ice phase. Rather than a study of a detailed parameterization of supersaturation, the...
متن کاملTropospheric Water Vapor and Climate Sensitivity
Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO2), using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO2 is found as the difference between the equilibrium responses for control and doubled CO2 cases. Clouds are specified to ...
متن کاملLarge-Scale Atmospheric Forcing by Southeast Pacific Boundary-Layer Clouds: A Regional Model Study
A regional model is used to study the radiative effect of boundary layer clouds over the Southeast Pacific on large-scale atmosphere circulation during August–October in 1999. With the standard settings, the model simulates reasonably well the large-scale circulation over the eastern Pacific, precipitation in the intertropical convergence zone (ITCZ) north of the equator, and marine boundary la...
متن کاملClimate and the Tropical Oceans*
An attempt is made to determine the role of the ocean in establishing the mean tropical climate and its sensitivity to radiative perturbations. A simple two-box energy balance model is developed that includes ocean heat transports as an interactive component of the tropical climate system. It is found that changes in the zonal mean ocean heat transport can have a considerable affect on the mean...
متن کامل